Predicting Surface Elevation

from a single RGB satellite image
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The ldea

RGB Satellite Image

3D Visualization

RGB Satellite Image

3D Visualization

Generated
Digital Elevation Model

Use a Conditional Generative model, G,
to predict the Digital Elevation Model
corresponding to a satellite image



The Problem

Given a satellite image, =, we want to model the conditional
probability of the DEM, Y, namely:

P(Y |X = 2)



Background

 Machine Learning * Discrete 2D Convolution

Algorithms that build a Lo Allm,n,]=
mathematical model e el
based on training data In
order to make predictions
without being explicitly
programmed for the task.
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(Mildly) Related Work

IM2HEIGHT: Lichao Mou and Xiao Xiang Zhu
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(Mildly) Related Work

Adjusted IM2HEIGHT architecture for our dataset
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Our Solution

Conditional Generative Adversarial Networks (CGANS)

[ Ground truth DEM ]

1 Real
[ Satellite Image ] Discriminator <
Fake
ﬁ GE”gﬂt“r 4{ Generated DEM

* Generator: generate DEMSs, try to fool the Discriminator

* Discriminator: try to distinguish between real and generated DEMs
* Train them against each other



The Implementation (pix2pix

e Generator G

Anu(s-i,snuza}

conw(128 128 64)

 conv(32,32,256)

conv(8,8.512) conw(4,4.512)
conv(16,16,512)

U-net

Skip Connections

conv(2,2,512) "M 1:912)conv(2,2,512) o004 512)

conv(B,8.512)
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conv(32,32,256)
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Skip connections preserve global structure (same in satellite image and DEM)




The Implementation (pix2pix)

 Discriminator

PatchGAN

— ™ ™ Real/Generated

" conv(30,30,1)
conv(31,31,512)

* conv(32,32 256)

Anvce-#.sﬁf,-l 28)

conv(128,128,64)

Assesses DEM'’s plausibility patch-by-patch



Dataset Construction

* The satellite image is comprised of the bands [B4, B3,
B2] (Copernicus Sentinel-2)

* The difference in resolution is handled by the API

ALOS World 3D - 30m GeoJSON

Google Earth Engine APl |t 2

Polygon RGB Image



Our Results
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Our Results

3D
Visualization

Input Image Predicted Image




Our Results

3D
Visualization
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Possible Applications

* On-line Mapping
* Old aerial imagery reconstruction
* Applications in virtual environment rendering

Inverse Problem: Predict Pixel Values based on Elevation

Input Image Ground Truth Predicted Image




Possible Applications

Random Terrain Generation using the inverse model

Input Image (Random Perlin Noise) Predicted Image




Limitations

* GANSs are still an emerging and active area of research

* Predictions on never-before-seen data present a lot of
variance

 Predictions of elevation are relative within a satellite
Image, not absolute.

 Hardware restrictions :(



Difficult Examples




Difficult Examples




Solution?

More Data !

J W o
b T o 3 Voo
b 3T g s
.’ ¥
e Ay W 4 -2l iy
. X ; n WA . e
i - L i Lt B
ﬂ £y e P vl kS == ;
s e - K ey T
. o g T iy . T Wy
A g - oy
o i e e
' A N g, o gl .
B - s e

[B2, B3, B4] [B5, B6, B7][B8, B8A, B11]



Future Work

* The process of synthesizing the data of our dataset itself
contains many sources of error (precision,
correspondence, lighting, ...)

* We can mitigate their effects by working directly with the
exact data captured by satellites, drones, ...

* Depth Maps
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