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The Idea

Use a Conditional Generative model, G, 
to predict the Digital Elevation Model 

corresponding to a satellite image 



The Problem

Given a satellite image,   , we want to model the conditional 
probability of the DEM,    , namely:



Background

● Machine Learning

Algorithms that build a 
mathematical model 
based on training data in 
order to make predictions 
without being explicitly 
programmed for the task.

● Discrete 2D Convolution

Credits: Sumit Saha



(Mildly) Related Work

Final Network Architecture
Point cloud visualization of the height estimates 
for two selected
examples.

IM2HEIGHT: Lichao Mou and Xiao Xiang Zhu 



(Mildly) Related Work

Adjusted IM2HEIGHT architecture for our dataset



Our Solution

Conditional Generative Adversarial Networks (cGANs)

● Generator: generate DEMs, try to fool the Discriminator
● Discriminator: try to distinguish between real and generated DEMs
● Train them against each other



The Implementation (pix2pix)

● Generator G

Skip connections preserve global structure (same in satellite image and DEM)



The Implementation (pix2pix)

● Discriminator

Assesses DEM’s plausibility patch-by-patch



Dataset Construction

● The satellite image is comprised of the bands [B4, B3, 
B2] (Copernicus Sentinel-2)

● The difference in resolution is handled by the API



Our Results



Our Results

3D 
Visualization



Our Results

3D 
Visualization



Possible Applications

● On-line Mapping
● Old aerial imagery reconstruction
● Applications in virtual environment rendering

Inverse Problem: Predict Pixel Values based on Elevation



Possible Applications

Random Terrain Generation using the inverse model 



Limitations

● GANs are still an emerging and active area of research
● Predictions on never-before-seen data present a lot of 

variance
● Predictions of elevation are relative within a satellite 

image, not absolute.
● Hardware restrictions :(



Difficult Examples



Difficult Examples



Solution?

More Data !



Future Work

● The process of synthesizing the data of our dataset itself 
contains many sources of error (precision, 
correspondence, lighting, …)

● We can mitigate their effects by working directly with the 
exact data captured by satellites, drones, …

● Depth Maps
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